Dense Periodic Packings of Tetrahedra with Small Repeating Units
نویسندگان
چکیده
We present a one-parameter family of periodic packings of regular tetrahedra, with the packing fraction 100/117 ≈ 0.8547, that are simple in the sense that they are transitive and their repeating units involve only four tetrahedra. The construction of the packings was inspired from results of a numerical search that yielded a similar packing. We present an analytic construction of the packings and a description of their properties. We also present a transitive packing with a repeating unit of two tetrahedra and a packing fraction 139+40 √ 10
منابع مشابه
Exact constructions of a family of dense periodic packings of tetrahedra.
The determination of the densest packings of regular tetrahedra (one of the five Platonic solids) is attracting great attention as evidenced by the rapid pace at which packing records are being broken and the fascinating packing structures that have emerged. Here we provide the most general analytical formulation to date to construct dense periodic packings of tetrahedra with four particles per...
متن کاملDense Crystalline Dimer Packings of Regular Tetrahedra
We present the densest known packing of regular tetrahedra with density φ = 4000 4671 = 0.856347 . . . . Like the recently discovered packings of Kallus et al. and Torquato–Jiao, our packing is crystalline with a unit cell of four tetrahedra forming two triangular dipyramids (dimer clusters). We show that our packing has maximal density within a three-parameter family of dimer packings. Numeric...
متن کاملNew family of tilings of three-dimensional Euclidean space by tetrahedra and octahedra.
It is well known that two regular tetrahedra can be combined with a single regular octahedron to tile (complete fill) three-dimensional Euclidean space . This structure was called the "octet truss" by Buckminster Fuller. It was believed that such a tiling, which is the Delaunay tessellation of the face-centered cubic (fcc) lattice, and its closely related stacking variants, are the only tessell...
متن کاملEvolution of the dense packings of spherotetrahedral particles: from ideal tetrahedra to spheres
Particle shape plays a crucial role in determining packing characteristics. Real particles in nature usually have rounded corners. In this work, we systematically investigate the rounded corner effect on the dense packings of spherotetrahedral particles. The evolution of dense packing structure as the particle shape continuously deforms from a regular tetrahedron to a sphere is investigated, st...
متن کاملDense packing and symmetry in small clusters of microspheres.
When small numbers of colloidal microspheres are attached to the surfaces of liquid emulsion droplets, removing fluid from the droplets leads to packings of spheres that minimize the second moment of the mass distribution. The structures of the packings range from sphere doublets, triangles, and tetrahedra to exotic polyhedra not found in infinite lattice packings, molecules, or minimum-potenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 44 شماره
صفحات -
تاریخ انتشار 2010